TítuloAutoresordenar íconesResumo
Krylov subspace methods applied to two-phase flows in porous mediaM. C. Zambaldi, F. MarcondesIt is well known that nonlinear and linear iterations have a significant effect on the performance of transient problems. In this paper, the numerical behavior of the Inexact Newton method with Generalized Minimal Residual algorithm is applied to the two-phase flow model commonly employed in reservoir simulation. The equations are discretized by the finite volume method using unstructured Voronoi meshes and a fully implicit procedure is used to advance the variables.
O problema de SitnikovM. F. Caetano, M. V. P. GarciaEm 1959 K. Sitnikov exibiu uma configuração de três massas, a qual mostrava pela primeira vez a existência de oscilações no problema dos 3-corpos. Aqui detalharemos o artigo publicado por ele, ver [4], mostrando assim, a existência do movimento oscilatório no problema dos 3-corpos.
A converse lyapunov theorem for retarded functional differential equationsM. Federson, S. SchwabikWe consider retarded functional differential equations and state a converse Lyapunov-type theorem for these equations by means of the theory of generalized ODEs introduced by J. Kurzweil.
Equações diferenciais parciais e teoria dos camposM. ForgerA meta principal deste minicurso é dar uma pequena contribuição ao fortalecimento da interação entre as areas de análise e de física matemática.
M-contradomínio numérico e pseudo espectro na analise de estabilidade do método das linhasM. I. Cardoso Gonçalves, F. S. V. BazanNeste trabalho fazemos uma discussão sobre o uso do pseudo espectro, do contradomínio numérico e do M -contradomínio numérico na análise de estabilidade do método das linhas. Mais especificamente, estamos in teressados na estabilidade de métodos de passo simples utilizados para encontrar a solução numérica de problemas de valor inicial e de fronteira em equações diferencias ordinérias e equações diferencias parciais do tipo evolução.
Generalized solutions to GKDV equationM. M. MeloIn this article we study the Cauchy problem in $\mathcal{G}_2((0,T)×\times \mathbf{R})$ (the algebra of the generalized functions, in the sense of Colombeau) for the generalized Korteweg-de Vries equation, with initial data $\varphi \in \mathcal{G}_2(\mathbf{R})$, which contains $H^s(\mathbf{R})$ for all $s \in \mathbf{R}$.
Some remarks on approximation and interpolation in $C_0(X; E)$M. S. KashimotoWe present a result concerning simultaneous approximation and interpolation by certain vector subspaces of the space $C_0 (X; E)$.
Finite decidability and polynomialsM. V. P. GarciaWe study here some aspects of $k$-decidability related with the following feature: Suppose that a germ is not $k$-decidable, is it true that are are two polynomials that shows this? We explicit and characterize the situations where the answer is yes (or no).
About nonlinear electromagnetoelastic problemM. Vishnevskii & V. PriimenkoThere is considered the first initial boundary-value problem related to the electrodynamics of vibrating elastic media. The model under study consists of three coupled differential equations, one of them is a hyperbolic equation (an analog of the Lamé equations) and two other ones form a parabolic system (an analog of the diffusion Maxwell system). Existence and uniqueness results for a model describing the nonlinear interactions of the electromagnetic and elastic waves are established.
Curved spacetime generated by a non-linear realization of the lorentz GroupMarcelo Carvalho, Alexandre LyraWe analyse the non-linear realization of Lorentz transformation as proposed heuristically by Albano and Dresden and we built a space that enables us to deduce analytically their transformation. The central point of our construction is the space of sections $\Gamma(M) \ni s(x): M \rightarrow R^4$ which allow us to define a curved metric in spacetime.